METHOD FOR IDENTIFICATION OF NONLINEAR NONAUTONOMOUS DYNAMICAL SYSTEM - Научное сообщество

Вас приветствует Интернет конференция!

Приветствуйем на нашем сайте

Рік заснування видання - 2011

METHOD FOR IDENTIFICATION OF NONLINEAR NONAUTONOMOUS DYNAMICAL SYSTEM

09.06.2025 21:32

[1. Systemy i technologie informacyjne]

Автор: Viktor Gorodetskyi, PhD National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine; Mykola Osadchuk, PhD National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine


ORCID 0000-0003-4642-3060 Viktor Gorodetskyi

ORCID 0000-0002-3409-9315 Mykola Osadchuk

Identification of ordinary differential equation (ODE) system from time series of its variables is actual in many fields of science and engineering. This problem becomes more complex for nonautonomous ODE systems, which are depending not only on constant coefficients, but also depending on variable input actions. It was noted in [1] that the identification of a nonautonomous ODE system in most cases requires simultaneous knowledge of the time series of input actions as well as observed variables of the system.

Consider ODE system, which have   variables  ,    and all of them are observable. ODE system have polynomial right-hand sides of equations with   constant coefficients  -1 in each equation. Some constant coefficients   (one or several) are replaced with unknown time series of input actions  .

The aim of the research is to develop nonautonomous ODE system identification method, which can identify structure of system's equations, numerical values of constant coefficients   and time series of unknown input actions   from time series of observable variables  . It is assumed, that rate of change for unknown input actions   is lower comparing to rate of change for observable variables  .

To solve the problem under consideration, a nonautonomous ODE system identification method was proposed in [2], which is based on idea from [3]. Let time series   have a time duration  . Let also a section (a "window") of length  , starting from a certain time  , with   is selected from the time series. Let some well-known method for identifying an autonomous ODE system, for example, a least squares method (LSM), is applied within the window. As a result, the constant coefficients values   will be obtained, which are related to the window position . When start of the window is shifted to position  , a constant coefficients values   will be obtained and so on. Thus, repeating of window shifting and an autonomous ODE system identification allow to obtain time series  . Article [2] demonstrate, that correct result of identification of input actions   should be shifted in time   on some unknown time  . The analytic study of system with additive input action, where  , show that time shift is  . This means that the result of autonomous system identification   should be positioned at the middle of the window. Basing on the significance [4] values and analysis of graphs  , it is possible to determine, which coefficients of unknown ODE system are zero, which are constants   and which are input actions  .

The proposed method was used for identification of several nonlinear ODE systems with   observable variables. For a system with additive input action, where  , a structure of equations was identified, a numerical values of constant coefficients   were determined and time series of input action   was identified. For a system with multiplicative input action, where  , an identification was performed and a relation  , which was analytically obtained, was experimentally confirmed. For a system with two input actions, where  , time series of input actions   were identified simultaneously. For an ODE system, in which all 6 constant coefficients   were replaced with input actions  , time series of all input actions were identified.

The proposed method allows to identify a nonautonomous ODE system with unknown input actions, which have low rate of change. Unlike [3], this method allows to identify not only time series of input actions, but also a structure of equations and numerical values of constant coefficients in the system. Method can be generalized by using of identification methods, other that LSM, within the window. Another way to generalize the proposed method is to use it for identification of nonautonomous ODE system from a single observable variable.

References

1. L. A. Aguirre, C. Letellier, Modeling Nonlinear Dynamics and Chaos: A Review // Mathematical Problems in Engineering. – vol. 2009, article ID 238960. – 35 p. – DOI: https://doi.org/10.1155/2009/238960

2. V. Gorodetskyi, M. Osadchuk, Identification of oscillatory systems with unknown continuous input actions // International Journal of Dynamics and Control. – 2024. – vol. 12. – P. 3534-3545. – DOI: 10.1007/s40435-024-01458-9

3. V. S. Anishchenko, A. N. Pavlov, Global reconstruction in application to multichannel communication // Phys. Rev. E. – 1998. – vol. 57. – N 2. – P. 2455-2457.

4. C. Lainscsek, C. Letellier, I. Gorodnitsky, Global modeling of the Rössler system from the z-variable // Physics letter A. – 2003. – vol. 314. – P. 409-427.



Creative Commons Attribution Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License
допомога Знайшли помилку? Виділіть помилковий текст мишкою і натисніть Ctrl + Enter
Конференции

Конференции 2025

Конференции 2024

Конференции 2023

Конференции 2022

Конференции 2021



Міжнародна інтернет-конференція з економіки, інформаційних систем і технологій, психології та педагогіки

Наукова спільнота - інтернет конференції

:: LEX-LINE :: Юридична лінія

Інформаційне суспільство: технологічні, економічні та технічні аспекти становлення